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Lattice Models for Liquid Crystals 
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A problem in the theory of liquid crystals is to construct a model system 
which at low temperatures displays long-range orientational order, but not 
translational order in all directions. We present five lattice models (two 
two-dimensional and three three-dimensional) of hard-core particles with 
attractive interactions and prove (using reflection positivity and the Peierls 
argument) that they have orientational order at low temperatures; the two- 
dimensional models have no such ordering if the attractive interaction is 
not present. We cannot prove that these models do not have complete 
translational order, but their zero-temperature states are such that we are 
led to conjecture that complete translational order is always absent. 
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1. I N T R O D U C T I O N  

Since the work o f  Onsager, ~1~ hard- rod  models have been widely used to 
. explain the existence o f  liquid crystals, especially the transition f rom an 

isotropic liquid phase to a liquid crystal. DiMarz io  ~2> applied the Bethe-  
Guggenheim approximat ion to the model  o f  hard rods o f  finite length on a 
cubic lattice, and showed that  in this approximat ion one would obtain a 
phase with orientational ordering at sufficiently high density. It  is doubtful,  
however, whether hard rods on a cubic lattice without  any additional inter- 
action do indeed undergo a phase transition (see de Gennes, ~3~ in particular 
Fig. 2.6). The only rigorously known result is the absence o f  phase transitions 
for  dimers (Heilmann and LiebC4~). 

It  is possible to apply Peierls' argument  to prove that hard rods on lattices 
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undergo phase transitions when subjected to more artificial restrictions 
(Lebowitz and Gallavotti, (5) Heilmann (6~) or to appropriate interactions 
between the rods (Runnels and Freasier, (7~ Heilmann and Pr~estgaard(8~). A 
characteristic of all these models, however, is that their ordered states have 
the configuration at every vertex completely specified. Thus, these states also 
have complete crystalline (i.e., translational) ordering and are not, therefore, 
like liquid crystals. 

The purpose of this paper is to present five lattice models (defined in 
Section 2) which we believe have a phase transition from a liquid to a liquid 
crystal. (These results were announced in Ref. 17.) We shall prove that these 
models do have a phase transition from an isotropic to an anisotropic phase. 
At present we are not able to demonstrate rigorously that the anisotropic 
phase is not crystalline, but, in contrast to the above-mentioned cases, the 
proof of orientational ordering that we give does not imply that the aniso- 
tropic phase is crystalline. In the discussion at the end of this paper we shall 
give some additional arguments for the conjecture that the anisotropic phase 
of these models does not possess complete  translat ional  ordering. (Complete 
translational ordering means that translational invariance is broken in all 
directions, as in a crystal.) For model I it is possible to go a bit further. By 
combining the results of this paper with a Kirkwood-Salzburg equation 
analysis, it can be shown that the conjecture is true at sufficiently low tem- 
perature. A paper by Heilmann and Kj~er (9~ will present the result. 

In three of the models, dimers are placed on either a quadratic or a cubic 
lattice, while in the two other models the molecules are quadratic fourmers 
placed on a cubic lattice. In all five cases we include attractive forces which 
stabilize the anisotropic states without forcing the formation of a crystal. 
This combination of repulsive forces (i.e., steric hindrance) and attractive 
forces may be important for the formation of real liquid crystals. 

In Section 3 we prove that these models possess a reflection pos i t iv i ty ,  a 

concept which goes back to the work of Osterwalder and Schrader (1~ in 
field theory and which has recently been used in lattice statistical mechanical 
models by Frohlich et aL ( ~  and Dyson et al. (~2~ For the general theory of 
reflection positivity in statistical mechanics, see Ref. 18. 

In Section 4 we show how reflection positivity can be used to prove that 
empty vertices are unlikely at high enough dimer fugacity and at low enough 
temperature. In Section 5 we define the contours which are needed for a 
Peierls argument (~8~ and extend the argument of Section 4 to prove that 
contours are also unlikely. Finally, in Section 6 the results of Sections 4 and 
5 are combined with Peierls' argument to give a simple proof of the existence 
of an anisotropic phase. The combination of Peierls' argument and reflection 
positivity was first used in field theory by Glimm et al. (~4~ and in statistical 
mechanics by Frohlich and Lieb. (1~ Unfortunately, reflection positivity 



Lattice Models for Liquid Crystals 681 

cannot be extended (at least not at present) to systems in which the molecules 
are longer than dimers. Therefore the proof  given here cannot be generalized 
to larger molecules, although we believe, of  course, that the phase transition 
persists if the molecule length is increased from two to any larger value. All 
these models have the property of no ordering of any kind at high tempera- 
tures. This can be seen by standard high-temperature expansion methods. 
Therefore, all these models have a phase transition. 

2, THE M O D E L S  

In models I and II we place hard dimers on a (two-dimensional) quadratic 
lattice; i.e., a vertex of the lattice is either empty or covered by at most one 
dimer. A dimer covers two vertices that are connected by an edge. In model 
I there is a contribution - a  to the energy for each pair of neighboring, 
collinear dimers (see Fig. 1). In model II there is a contribution - b t o  the 
energy for each edge of the lattice that has both its endpoints covered by 
dimers perpendicular to the edge (see Fig. 2). 

In model III we place quadratic fourmers on a (three-dimensional) cubic 
lattice, again with the rule that a vertex is either empty or covered by at most 
one fourmer; a fourmer covers four vertices, which together constitute a 
minimal square of the cubic lattice, so that there are three orientations of  
fourmers altogether. An attractive energy - a  is included between coplanar 
fourmers that occupy two pairs of  neighboring vertices in the cubic lattice 
(see Fig. 3). Model IV is identical to model III except that the energy is - b  
for each edge that connects vertices covered by (distinct) coplanar fourmers 
(see Fig. 4). 

Finally, model V is the three-dimensional version of  model II, i.e., we 

O 

Fig. 1. A dimer arrangement on a subset of the square lattice. 
Uncovered vertices are shown as open circles. The attractive 
interactions corresponding to model I are shown as wavy lines. t 

H O 

!If 

Fig. 2. The same as Fig. 1 but with the attractive interactions 
corresponding to model II shown as wavy lines. 

o-1  
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place hard dimers on a cubic lattice and add - b  to the energy for each edge 
that connects vertices covered by parallel dimers perpendicular to the edge. 
Models II and V have been treated in the DiMarzio approximation by 
Cotter and Martire. ~6~ 

In addition to the above-mentioned energies we also add a chemical 
potential term to the Hamiltonian (i.e., we use the grand canonical ensemble 
in which the particle number is not fixed): 

-tzNa 

where Na is the number of particles (dimers or fourmers.) 
For simplicity of exposition we confine our attention in the following 

sections to the two-dimensional systems; the extension to three dimensions 
is obvious and the relevant results Will be stated at the end of the relevant 
sections. 

In order to have a convenient notation we introduce a coordinate system 
in the plane of the quadratic lattice such that the vertices of the lattice are 
the points with integer coordinates (7/2). The reflection positivity only holds 
for finite systems if we have periodic boundary conditions and an even number 
of vertices in each direction; consequently we take as our domain A a rect- 
angular subset of size 2N • 2M: 

A = { ( x , y ) :  x = 0 , 1 , . . . , 2 N -  1, y = 0 , 1  ..... 2 M -  1) 

and compute x-coordinates modulo 2N onto 0 ~< x < 2N and y-coordinates 
modulo 2M onto 0 ~< y < 2M whenever necessary, i.e., A is wrapped on a 
torus. (In three dimensions we take 0 ~< z < 2L.) 

A dimer placed on the quadratic lattice is identified by the position, in 
Cartesian coordinates, of its midpoint, i.e., (x + 1/2, y) for the dimer that 

O O 

~176 0 0 

0 0 0 0 

Fig. 3. An arrangement of coplanar fourmers. Uncovered 
vertices are shown as open circles. The attractive inter- 
actions correspgnding to model III are shown as wavy 
lines. 

Fig. 4, The same as Fig. 3, but with the attractive inter- 
actions corresponding to model IV shown as wavy lines. 
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covers the vertices (x, y) and (x + 1, y) and (x, y + 1/2) for the dimer that 
covers (x, y) and (x, y + 1). The former are called horizontal dimers and the 
latter vertical dimers in order to distinguish between the two possible orienta- 
tions. The set of all possible dimer positions is denoted ~.  Sometimes we will 
call N' the "edges of A." 

A dimer arrangement on A is an allowed configuration of dimers on 
the edges of A (i.e., without multiple occupancy of a vertex). The set of all 
possible dimer arrangements on A (including the empty one) will be denoted 
9 .  A convenient way to describe ~ is the following: To each of the 8NM 
possible dimer positions in N one attaches a copy of the two point space 
{0, 1} (i.e., a variable which is either zero or one). Then -~ can be identified 
in a natural way with a subset of T = {0, 1} ~NM, letting 1 correspond to the 
presence and 0 to the absence of a dimer. We call ~ the phase space and 
introduce the characteristic function X defined for all r E ff by 

X(r = {10 if r  
if r162 (1) 

with the above-mentioned identification between ff and dimer configurations 
being implicitly understood in (1). 

3. REFLECTION P O S I T I V I T Y  

We first introduce the reflection lines: Let j be an integer satisfying 
0 ~< j ~< N - 1 and consider the pair of "vertical" lines in the plane 

L j -  = {(j + �89 y):  y 

Lj. + = { ( j +  N + � 8 9  y): y e R }  (2) 

Let N'j ~ be the (horizontal) dimer positions that are in Lj-  u Lj + (i.e., 
~ j o =  {(x,y):x = j  + 1/2 or j + N + 1/2, y = 0, 1,..., 2 M -  1}) and let 
~.+ (resp. ~ j - )  be the dimer positions to the right of Lj-  and to the left of 
Lj § (resp. to the right ofLs + or the left of Lj-) .  The dimer positions ~ 'are  
thus partioned into three sets, ~jo, 9~j +, and 9~j-, where the first set contains 
4M points and the two latter contain 2M(2N - 1) points each. The phase 
space cg is then given by 

= %o x %+ x % -  

where ~.o = {(3, 1} 4M corresponds to the dimer configurations on ~jo, etc. 
There is a natural involution Oj of A onto A obtained by reflection 

r  ( x , y ) - - - , (2 j  + 1 - x , y )  (3) 
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The reflection 0j maps Mj + onto Mj- and Mj- onto Mj +, while it is the identity 
on ~,jo. If  lifts to an involution of ~r onto cg mapping %+ onto %-  and %.- 
onto % + and leaving %o invariant. We shall use 0j as a symbol for all these 
maps. 

We also consider the natural action of 0j as an involution on (complex- 
valued) functions on cg. I f  f is such a function, then Ojfis the function given 
by 

(OJ)(~) = f(Of),  ~ ~ ~ (4) 

By ~s + we denote the functions that depend only on the cgjo and cg.+ co- 
ordinate, i.e., a point ~ ~ cg is a triplet t = ( t - ,  t ~ ~+) with tj * ~ c~,, and 
f E  ~ +  if f @ - ,  t ~ t +) is independent of t - .  Similarly ~j.- denotes the 
functions that are independent of % +. Clearly 0j~j + = ~ - .  A function that 
depends only on %.o is in both o~j + and ~ - .  

k e m m a  1. L e t f ~  ~ + .  Then 

S = ~ f(~)(O,f)(t) >~ 0 

Proof. Write ~ ~ cg as ~ = ( t - ,  ~o, t+). Then 
f (~- ,  ~o ~+) = g(~O, ~:+) 

and 

For each t ~ 

s = E E E c )  

E g(t~ ~:+) = E g(~:o, ~:-) 

s o S  ~> 0. �9 

We now turn our attention to the dimer arrangement space ~ c cg and 
to the Hamiltonian H of the dimer system. If  f is any (complex-valued) 
function on ~ ,  it can be extended to a function on cg in many ways. However, 
xf, where x is given by (1), has a natural extension, i.e., 

(xf)(~:) = f0f( t) '  s ~ N  (5) 

X itself can be written as 

X ---- Xj-XJ "+ 

with Xj + e ~ + ,  XJ- = OjXj +, and X ~ take on the values 1 or O. 
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The Hamiltonians discussed in Section 2 can all be written in the 
following canonical way: For ~: = (~-, ~:o, ~+)~ N, ( ~  %~, 

H(~) = k(~ :~ + h(~ :~ ~:+) + (0,h)(~ ~ s ~-) 

_ ~ g~(~o, ~+)(0,g~)(~o, ~:-) (6) 
i 

h(~ ~ s e+) [resp. (Ojh)(f ~ se-)] is the interaction energy (including the chemical 
potential) of all the dimers on ~j  + u ~jo [resp. N'j- u N'j~ Here -k (~  :~ is 
the interaction energy (if any) of the dimers on N'j ~ together with their chem- 
ical potential. The term k is included in H in order that the energy of ~jo 
not be counted twice. The only relevant fact about these functions is that they 
are real. The sum in (6) is the interaction of the dimers on ~j+ with those on 
~ j - .  The functions g~ are real and nonnegative; the minus sign in front of the 
summation expresses the fact that the interaction is attractive. The minus 
sign is crucial. The sum on i will have 4M terms in the simple nearest neighbor 
case, but for the purpose of the following Theorem 2 it could have more 
terms if more than nearest neighbor term were present. 

The partition function of the system of interacting dimers at the tem- 
perature T =/3-1 is given by 

Z = ~ exp[-t3H(~)] (7) 

If  f is any (complex-valued) function on -~, then its expectation value is 

( f )  = Z -1 ~ f(~) exp[-/~H(~)] (8) 

Theorem 2. Let f be a (complex-valued) function on ~ and f e  o~j. +. 
Then 

( f ( O j f ) )  >. 0 

Proof. For f ~ N let G(~) = exp[-/gH(f)]. Consider (7 = xG as a function 
on cg [see (5)]. Clearly (7 = Gj + Gj -G/ ,  where 

aj+(~- ,  ~o, C )  = x;+(~ ~ C )  exp{-N�89 ~ + h(~ ~ C)])  

G s- = ojaj + 

G / =  X(~:)exp[/3 ~ g,(~:o, ~+)(0jg0(~:o, ~:-)] 

and Gj + e o~j +. We can make a power series expansion of the exponential in 
G / a n d  thereby obtain for (7 a sum of terms, each with a positive coefficient. 
Each term is clearly of the form 

x(~:)t,(~ ~ C)(0j~)(~ ~ C )  = o(r :~ C)(0jp)(~ ~ ~-) 
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where p = xj+t*. Thus, G is a sum (with positive coefficients) of terms of the 
form 4~(~ :~ ~:+)(0fl0(~ :~ s e-)  with q~ e o~i + and ~ real. Theorem 2 now follows 
from Lemma 1. �9 

C o r o l l a r y  3. Let f and g be (complex-valued) functions on ~ with 
f e  o~j + and g e o~s-. Then 

[(fg) l  2 ~< (f(Ojf))(~,(O~g)) 

Proof. Standard Schwarz inequality. �9 

Corollary 3 is the desired goal of this section. For Models I and II the 
decomposition of H in the form (6) holds for every j = 0, 1 ..... N - 1 and 
also for every pair of horizontal lines through the center of the vertical edges 
and separated by a distance M. 

For  the three three-dimensional models on a lattice 2N • 2M • 2L we 
have, by a similar argument, reflection positivity (i.e., the analog of Corollary 
3) for reflection through pairs of planes separated by N or M or L. 

4. A L O W E R  B O U N D  ON THE D I M E R  D E N S I T Y  

As the first application of reflection positivity we shall show how a useful 
upper bound on the density of empty vertices can be obtained. In the two- 
dimensional case let (x, y) E A be a vertex and let P(x,y) be the projection 
onto the configurations in which there is no dimer on (x, y), i.e., for ~: ~ 

(~  if there is a dimer on (x, y) in ~: 
P(=,u) = if there is no dimer on (x, y) in ~: (9) 

In conformity with the convention in Section 3, P(x,u) should really be thought 
of as a function on the bonds incident on (x, y). By translational invarianee 

1 - -  2 p  = ( P ( x , ~ ) )  

is independent of (x, y) (p is the dimer density). 

If, in Corollary 3, we t a k e f  = P(x,y) and g = 1 (assumingj + 1 ~< x ~< 
j +  N} we obtain (w = 2 j +  1 - x +  2N) 

so that 

(P,x,~)) = <. (P,,,,~)P,~,~)><l> 

1 -- 2p = (P(x,u)) ~ (P(x,mP(w,u)) 1/z 

Our goal in the next theorem is to extend this argument to every vertex in A, 
not just two. The advantage of this is clear: instead of having to estimate 
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(P(x.y)), i.e., the expectation value of a local quantity, we need only estimate 
the expectation value of a global quantity, which is much easier. 

Theorem 4. Let T be the set of  projections of  the form P = P~IP~2 "'" 
P ~ ,  where zl ,  z2 ..... zka re  distinct vertices i n A a n d  1 <<. k <~ 4NM; IP] = k. 
Then 

max (e) l /v  = </6)1/4uN 
P e T  

where P = 1-~A P~. In particular 

1 - 2p <~ ( p ) ~ / , u N  (10) 

Proof. Define f (P)  = (p) , / te t  for P e T and f ( I )  = 1. (Here, I is the 
unit operator, i.e., the unit function on configurations, [I[ = 0.) Let t c T 
be the set of  P ' s  that maximizef (P) .  I f  0 is a reflection operator and P e T, 
then we can write P = QR, where Q e ~ ' -  and R e o ~'+. Now, Q or R might 
b e / ,  but not both; Q and R belong to T except if they are L Let 0 = OQ, 

= OR; then 101 - IQ[, IRI = Igl,  and IQ[ + Igl = ]e l ,  By Corollary 3 

(p)2 <~ (QQ_.)(RR) 

SO 

f (P)  <~ f(QQ)I~ (] l) 

This holds even if R = L From (11) we see that if R r  P = QR, and 
P ~ t, then R/~ ~ t also. Let P be any element in t (t cannot be empty since T 
is finite) and suppose that P(x.~) is a factor in P. Reflect in the vertical line 
through (x + 1/2, y), then in the line through (x + 3/2, y), then in the line 
through (x + 5/2, y), etc. In this way we eventually obtain a P '  ~ t containing a 
horizontal chain of  P~'s of  length 2N (namely P(~,~), i = 0, 1,..., 2N - 1). I f  
we then reflect P '  in the horizontal lines with ordinates y + 1/2, y + 3/2, 
y + 5/2, etc., we eventually obtain P E t. �9 

Next we use Theorem 4 to obtain an upper bound on 1 - 2p. Let Eo 
be the energy of a close-packed configuration with the lowest possible energy 
and % be the corresponding energy per vertex (i.e., % = Eo/4NM in two 
dimensions and % = Eo/8NML in three dimensions); then we have the 
following result: 

Theorem 5 

1 - 2p ~< exp(fl%) 

Proof. By considering only a term with energy E0 in Z [Eq. (7)], we find 
Z ~> exp(-flEo).  I f P  is as in Theorem 4, then the numerator  in (8) for ( P )  
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contains only the term with no dimers; this term is one. Thus ( P )  = Z -1 
and Theorem 5 follows from Theorem 4. �9 

The following are the values of  Co in the five models mentioned in 
Section 2: 

Co(I) = - / , / 2  - a/2, 

%(III) = - /z /4  - a/2, 

c0(V) = - /* /2  - 2b 

Co(II) = - / , / 2  - b 

Co(IV) = - t~/4 - b (12) 

Clearly, if/z and a (resp. b) are chosen such that eo < 0, then 1 - 2 0 goes to 
zero as T - +  0, i.e., all vertices become occupied by dimers. 

5. E S T I M A T E S  FOR THE P R O B A B I L I T Y  OF BAD S Q U A R E S  

In the previous section reflection positivity was used to provide an upper 
bound for the probability of  empty vertices. Here we extend the argument to 
somewhat more complex events called '~ bad squares." These estimates will 
be used in the next section, where a Peierls-type argument will be given to 
show that there is long-range order at low temperatures. 

In two dimensions, let S~ denote an elementary square of  the lattice 
centered at z = ( l +  1/2, m +  1/2), 0 ~< l < 2 L ,  0 ~<m < 2M, and con- 
sisting of the four vertices (l, m), (l + 1, m), (/, m + 1), and (l + 1, m + 1). 
Henceforth, for simplicity, we will assume L and M are even. There are four 
classes of  squares, labeled %e, %o, ~oe, %o, according as 1 (resp. m) is even or 
odd, and there are M L  squares in each class. 

The extensions to three dimension is obvious. S~ is then a " c u b e "  of six 
vertices centered at (l + 1/2, m + 1/2, n + 1/2) with 0 ~< I < 2L, 0 ~< m < 
2M, 0 ~< n < 2N. The L, M, and N are assumed to be even. There are eight 
equivalence classes: ~ . . . .  . . . ,  aooo with L M N  cubes in each. 

Fix z and consider a configuration ~. We say that S~ is " b a d "  if and only 
if ~: restricted to S~ is not compatible with a ground state. Specifically this 
means: S~ is bad if and only if there is one or more empty vertice on Sz or 
else the dimers (resp. fourmers) on the vertices of  S~ are not all of  the same 
orientation. [Note: The dimers (fourmers) on S, refer to all the dimers 
(fourmers) incident on the vertices of  & ,  including those that connect 
vertices of  Sz to some other vertex.] 

Let Q~ be the projection onto configurations in which Sz is " b a d . "  
Thinking of Q~ as a function on dimer configurations (in two dimensions), 
the support of  Q~ is the 12 bonds connected to S~. The three-dimensional 
analogue is obvious. 
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If  A denotes a nonempty subset of square (cube) midpoints, and ]A] the 
number of its elements, let 

g =  max'/z~eA Q z ~ / [ A ' A ~  , (13) 

Our aim is to show that g --+ 0 as/3 ~ ~ (exponentially fast, in fact), uni- 
form]y in L and M. We will show: 

Lemma.  If  Q~ is the projection onto a bad square (resp. cube) centered 
at z and i f g  is given by (13), then 

g <~ ce -a~ 

with c = {4 (in 2 dim.), 8 (in 3 dim.)} and c~ > 0. Here a depends on the model 
and its parameters and is given by the following (note a > 0 as long as 
,0 < 0): 

model 1 a = �88 + a - max(0, t~)] 
model 2 ~ = �88 + 2b - max(0, tz + b)] 
model 3 a = �89 + 2a - 1/4 max(0,/~) - 1/4 max(0, 3tz + 4a)] 
model 4 ~ = �89 + 4b - 1/4 max(0, tz) - 1/4 max(0, 3~ + 8b)] 
model 5 c~ = �89 + 8b - �89 max(0, 3t~ + 10b) - �89 max(0,/~ + 2b)] 

ProoL As a preliminary step, let Q(A)= ~--~ Q~. Write Q(A)= 
O,,(A)O,o(A)aoe(A)aoo(A) [in three dimensions Q(A) = Qee,(A) ... Qooo(A)]. 
Here 

O~e(A) = 1--[ Q~ 
~AN~ee 

and so forth. L e t j  denote the subscript (eo), etc. Since Qi(A) ~< 1, <Q(A)> ~< 
<Qj(A)> for any j. There is at least one j such that IAjl >/ IA[/4 (111/8 in 
three dimensions). Thus, 

g <~ max{<Q(A)>l/~lAi: 25 r A c_ Gee} (14) 

(resp. 8]A] in three dimensions). In other words, (14) says that at the expense 
of a factor of 4 we can restrict attention to A's such that all squares are in 
the same equivalence class. The arbitrary choice of ~ee is based on the 
symmetry with respect to the class. 

There are LM (resp. LMN) possible pairs of reflection lines (planes). 
Of these there are LM/4 (resp. LMN/8) which carry an Sz into an S~, (and 
Q~ into Q~,) provided z e G~. In two dimensions these are the lines {(l + 1/2, y): 
/odd,  y E N} and {(x, m + 1/2): m odd, x ~ R}. Thus, by the same reasoning 
as for the empty vertex estimate (Section 4), a maximizing A for (14) is 
A = e~,, i.e., Q(A) is the projection onto configurations in which every (ee) 
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square is bad. Then [A I = LM.  (In three dimensions A = %ee, ]A[ = L M N ) .  
Let E be the minimum energy under the condition that every (ee) square is bad. 
Then 

g ~< (#e-aE)l/4LM/e-B'o 

(resp. 8 L M N  in three dimensions), since Z >1 exp(-4/3LM%) (resp. 8LMN).  
Here # is the total number of  possible configurations. In two dimensions 

# ~< 28LM since every edge has a dimer, or it does not. (# ~< 224LMN in three 
dimensions). 

The lemma is proved if we show E/4LM (resp. E/8LMN)  - % = a > 0 
Specifically, 

E / >  - [ /~  + a + max(0, I~)]LM 
/> - [ ~  + 2b + max(0, t~ + b)]LM 
>1 - [/~ + 2a + 1/4 max(0,/z) + 1/4 max(0, 3tz + 4a)]LMN 
/> - [ / z  + 4b + 1/4 max(0, ~) + 1/4 max(0, 3/~ + 8b)]LMN 
/> - [2/~ + 8b + �89 max(0, 3/z + 10b) + �89 max(0, t~ + 2b)]LMN 

model 1 
model 2 
model 3 
model 4 
model 5 

We give the proof  for model 1. The reader can easily do the other cases. The 
energy for a configuration ~: can be thought of  as a sum Of vertex energies, 
namely 0 (for an empty vertex), - � 8 9  for a dimer with an unsaturated end 
(absence of a wiggly line in the figures), and - / ~ / 2  - a/2 for a dimer with a 
saturated end. Now every vertex in A belongs to exactly one square in flee- 

The total vertex energy of a bad square is not less than 0 (all empty), - /~/2 
(three empty), - /~  - a (two empty), - 3~/2 - a (one empty), - 2/~ - a (none 
empty). Thus, this square energy is not less than - / x  - a - max(0, ix), and 
this leads to the E given above. �9 

6. THE PEIERLS A R G U M E N T  FOR L O N G - R A N G E  O R D E R  

In Section 5 we showed that the probability of  finding k bad squares at 
arbitrary locations is not greater than gk, with g = c exp(-f la) .  Both a and 
c depend on the model, but a < 0 (since E0 < 0 by hypothesis). Thus g -+ 0 
as/3 ~ oo. We will use this information in a Peierls-type argument to prove 
that if a dimer (fourmer) is placed at a fixed vertex (say z = 0), then the 
probability of  finding a dimer of  the same orientation at a vertex z -~ 0 is 
greater than 1/2 for large fi, uniformly in z. 

We will assume that the reader is familiar with the Peierls argument and 
will explain only the novel features for our liquid crystal models. In particular, 
we assume familiarity with the nonessential technical problems arising from 
the use of  periodic boundary instead of free boundary conditions (contours 
that run around the torus), and that as L, M, N - +  oo one needs a condition 
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such as rain(L, M, N)/log max(L, M, N ) - +  oo. It is also well known, and 
easy to prove, that our definition of  long-range order implies other defini- 
tions of phase transitions, such as the existence of at least two Gibbs states 
or the existence of  a spontaneous polarization or the discontinuity of the 
derivative free energy/unit volume with respect to an external polarizing field at 
zero field. References 15 and 18 can be consulted about some of these points. 

With a dimer (fourmer) fixed at 0, we will show that the probability of 
not having an identically oriented object at z r 0 is less than 1/2 for large ft. 

Call the object (dimer or fourmer) at 0 an h-object (e.g., a horizontal 
dimer in models 1 and 2). Let {: be a configuration with an h-object at 0 and 
no h-object at z. A plus vertex is defined as one which (a) has an h-object and 
(b) belongs to at least one good (i.e., not bad) square (cube). Otherwise, the 
vertex is said to be minus. 

Let A* be the lattice of midpoints of squares in A together with the usual 
notion of nearest neighbor points. Two points in A* are said to. be connected 
if and only if there is a connected path from one to the other. Squares in A 
are said to be connected if and only if their midpoints are connected in A*. 

Suppose that in ~: there are two nearest neighbor vertices, one of  which is 
plus and the other minus. They have two squares (resp. four cubes) in 
common, all o f  which must be bad. The midpoints of these two squares (resp. 
four cubes) can be connected by a line (resp. square) which we call a piece o f  
contour. 

Now we refer to the usual Peierls argument for the Ising model. Since 
the origin is plus and z is minus, there is a closed contour 7' in A* separating 
the two points. On one side of the contour there are plus vertices and on the 
other side there are minus vertices. 

As we saw above, every vertex of the contour (in A*) is the midpoint of 
a bad square. Hence 

Prob(7') < girl 

with 17'1 being the length (area) of 7'- 
We sketch the remainder of the Peierls argument: There must be a closed 

contour surrounding 0 or surrounding z. If  P is the probability that there is 
no h-object at z, we then have 

P ~< 2 ~ g1~=31'1(17'1/4)2 
1~1~>4 

in two dimensions, and with a similar expression in three dimensions. 
P -+ 0 as/3 --.-. ~ .  Here 3 m is an upper bound for the number of contours of 
length 17'[ and (17,]/4) 2 is an upper bound to their area, i.e., to the number of  
ways they can be placed to enclose a given point. 
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7. C O N C L U S I O N  

We have demonstrated that at low enough temperatures (and not too 
negative a chemical potential) each of the five models presented in Section 2 
will exist in a phase where one of  the two (three) possible orientations is 
preferred over the other. The question of  a possible positional ordering 
remains open. We conjecture that long-range positional ordering does not 
occur, for the following reasons (as exemplified for model I): Presumably, 
if there is no positional ordering for large/3, there is none for any ft. In the 
ground state all dimers are of  one orientation, say horizontal. Thus, for 
large/3, the system is like a product of uncorrelated one-dimensional systems 
because there is no interaction among the rows unless defects are present. 
These we have shown to be rare for large/3. Along a column there is not likely 
to be long-range ordering because in one dimension any defects, however 
rare, will destroy ordering. However, this argument leads us to expect that 
the (finite) correlation lengths will be very different in the direction of the 
dimers and in the orthogonal direction, the former tending to infinity as 
~ ---~ oo. 

A similar argument applies to the two fourmer models when one con- 
siders the ordering of fourmer positions among planes parallel to the pre- 
ferred orientation of the planes of the fourmers. However, the situation is 
quite different if one considers possible ordering within a plane. The attractive 
interaction in model III clearly favors a complete ordering within a plane and 
it is easy to prove by Peierls' argument that the two-dimensional version 
(where one only has fourmers of one orientation) does exist in a completely 
ordered phase at low enough temperatures. This effect would be expected to 
carry over to the three-dimensional model, in which case it raises the in- 
triguing question of whether the model can exist in six different phases. 

In model IV the attractive interaction is designed to allow "sl iding" of 
a row of  fourmers relative to a neighboring row in the same plane and one 
would not expect the two-dimensional version to exhibit a phase transition 
(Nisbet and FarquharC19~). This two-dimensional problem has not yet been 
resolved, however. 
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